首页 >> 综合热门 > 严选问答 >

基本函数求导公式

2025-08-06 03:51:13

问题描述:

基本函数求导公式,快急哭了,求给个正确方向!

最佳答案

推荐答案

2025-08-06 03:51:13

基本函数求导公式】在微积分中,求导是研究函数变化率的重要工具。掌握基本函数的求导公式是学习导数的基础。以下是对常见基本函数的导数进行总结,并以表格形式展示,便于查阅和记忆。

一、基本函数求导公式总结

1. 常数函数

若 $ f(x) = C $(C 为常数),则其导数为:

$$

f'(x) = 0

$$

2. 幂函数

若 $ f(x) = x^n $,其中 $ n $ 为任意实数,则其导数为:

$$

f'(x) = nx^{n-1}

$$

3. 指数函数

若 $ f(x) = a^x $,其中 $ a > 0 $ 且 $ a \neq 1 $,则其导数为:

$$

f'(x) = a^x \ln a

$$

特别地,当 $ a = e $ 时,有:

$$

f'(x) = e^x

$$

4. 对数函数

若 $ f(x) = \log_a x $,其中 $ a > 0 $ 且 $ a \neq 1 $,则其导数为:

$$

f'(x) = \frac{1}{x \ln a}

$$

特别地,当 $ a = e $ 时,即自然对数函数 $ \ln x $,导数为:

$$

f'(x) = \frac{1}{x}

$$

5. 三角函数

- $ f(x) = \sin x $,导数为:

$$

f'(x) = \cos x

$$

- $ f(x) = \cos x $,导数为:

$$

f'(x) = -\sin x

$$

- $ f(x) = \tan x $,导数为:

$$

f'(x) = \sec^2 x

$$

- $ f(x) = \cot x $,导数为:

$$

f'(x) = -\csc^2 x

$$

6. 反三角函数

- $ f(x) = \arcsin x $,导数为:

$$

f'(x) = \frac{1}{\sqrt{1 - x^2}}

$$

- $ f(x) = \arccos x $,导数为:

$$

f'(x) = -\frac{1}{\sqrt{1 - x^2}}

$$

- $ f(x) = \arctan x $,导数为:

$$

f'(x) = \frac{1}{1 + x^2}

$$

二、基本函数求导公式表

函数名称 函数表达式 导数表达式
常数函数 $ f(x) = C $ $ f'(x) = 0 $
幂函数 $ f(x) = x^n $ $ f'(x) = nx^{n-1} $
指数函数 $ f(x) = a^x $ $ f'(x) = a^x \ln a $
自然指数函数 $ f(x) = e^x $ $ f'(x) = e^x $
对数函数 $ f(x) = \log_a x $ $ f'(x) = \frac{1}{x \ln a} $
自然对数函数 $ f(x) = \ln x $ $ f'(x) = \frac{1}{x} $
正弦函数 $ f(x) = \sin x $ $ f'(x) = \cos x $
余弦函数 $ f(x) = \cos x $ $ f'(x) = -\sin x $
正切函数 $ f(x) = \tan x $ $ f'(x) = \sec^2 x $
余切函数 $ f(x) = \cot x $ $ f'(x) = -\csc^2 x $
反正弦函数 $ f(x) = \arcsin x $ $ f'(x) = \frac{1}{\sqrt{1 - x^2}} $
反余弦函数 $ f(x) = \arccos x $ $ f'(x) = -\frac{1}{\sqrt{1 - x^2}} $
反正切函数 $ f(x) = \arctan x $ $ f'(x) = \frac{1}{1 + x^2} $

三、小结

掌握这些基本函数的导数公式,有助于快速计算复杂函数的导数。在实际应用中,可以通过组合这些基本导数,使用导数的四则运算法则和链式法则来求解更复杂的函数导数。建议在学习过程中多做练习,加深对导数概念的理解与运用能力。

  免责声明:本答案或内容为用户上传,不代表本网观点。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。 如遇侵权请及时联系本站删除。

 
分享:
最新文章