【基本函数求导公式】在微积分中,求导是研究函数变化率的重要工具。掌握基本函数的求导公式是学习导数的基础。以下是对常见基本函数的导数进行总结,并以表格形式展示,便于查阅和记忆。
一、基本函数求导公式总结
1. 常数函数
若 $ f(x) = C $(C 为常数),则其导数为:
$$
f'(x) = 0
$$
2. 幂函数
若 $ f(x) = x^n $,其中 $ n $ 为任意实数,则其导数为:
$$
f'(x) = nx^{n-1}
$$
3. 指数函数
若 $ f(x) = a^x $,其中 $ a > 0 $ 且 $ a \neq 1 $,则其导数为:
$$
f'(x) = a^x \ln a
$$
特别地,当 $ a = e $ 时,有:
$$
f'(x) = e^x
$$
4. 对数函数
若 $ f(x) = \log_a x $,其中 $ a > 0 $ 且 $ a \neq 1 $,则其导数为:
$$
f'(x) = \frac{1}{x \ln a}
$$
特别地,当 $ a = e $ 时,即自然对数函数 $ \ln x $,导数为:
$$
f'(x) = \frac{1}{x}
$$
5. 三角函数
- $ f(x) = \sin x $,导数为:
$$
f'(x) = \cos x
$$
- $ f(x) = \cos x $,导数为:
$$
f'(x) = -\sin x
$$
- $ f(x) = \tan x $,导数为:
$$
f'(x) = \sec^2 x
$$
- $ f(x) = \cot x $,导数为:
$$
f'(x) = -\csc^2 x
$$
6. 反三角函数
- $ f(x) = \arcsin x $,导数为:
$$
f'(x) = \frac{1}{\sqrt{1 - x^2}}
$$
- $ f(x) = \arccos x $,导数为:
$$
f'(x) = -\frac{1}{\sqrt{1 - x^2}}
$$
- $ f(x) = \arctan x $,导数为:
$$
f'(x) = \frac{1}{1 + x^2}
$$
二、基本函数求导公式表
函数名称 | 函数表达式 | 导数表达式 |
常数函数 | $ f(x) = C $ | $ f'(x) = 0 $ |
幂函数 | $ f(x) = x^n $ | $ f'(x) = nx^{n-1} $ |
指数函数 | $ f(x) = a^x $ | $ f'(x) = a^x \ln a $ |
自然指数函数 | $ f(x) = e^x $ | $ f'(x) = e^x $ |
对数函数 | $ f(x) = \log_a x $ | $ f'(x) = \frac{1}{x \ln a} $ |
自然对数函数 | $ f(x) = \ln x $ | $ f'(x) = \frac{1}{x} $ |
正弦函数 | $ f(x) = \sin x $ | $ f'(x) = \cos x $ |
余弦函数 | $ f(x) = \cos x $ | $ f'(x) = -\sin x $ |
正切函数 | $ f(x) = \tan x $ | $ f'(x) = \sec^2 x $ |
余切函数 | $ f(x) = \cot x $ | $ f'(x) = -\csc^2 x $ |
反正弦函数 | $ f(x) = \arcsin x $ | $ f'(x) = \frac{1}{\sqrt{1 - x^2}} $ |
反余弦函数 | $ f(x) = \arccos x $ | $ f'(x) = -\frac{1}{\sqrt{1 - x^2}} $ |
反正切函数 | $ f(x) = \arctan x $ | $ f'(x) = \frac{1}{1 + x^2} $ |
三、小结
掌握这些基本函数的导数公式,有助于快速计算复杂函数的导数。在实际应用中,可以通过组合这些基本导数,使用导数的四则运算法则和链式法则来求解更复杂的函数导数。建议在学习过程中多做练习,加深对导数概念的理解与运用能力。